Optical Implementation of a Neural Network for Pattern Recognition

نویسنده

  • Jan Lagerwall
چکیده

HIS REPORT DESCRIBES the construction of a dynamic optical hybrid system for implementing multi-layer neural networks. The communication between neurons is performed by amplitude modulating optical signals with dynamic transmission filters realized with a ferroelectric liquid crystal spatial light modulator (FLC-SLM). A large part of the information processing is thus performed in parallel. The amplitude modulated signals are detected by a CCD-camera and some further processing is done in a conventional computer. The system should recognize two-dimensional graphic patterns and it has been tested on the ten Arabic digits in different shapes. As neural net algorithm a modified version of the Neocognitron model of Kunihiko Fukushima has been used. The system has been simulated in MATLAB and its ability to generalize and its sensitivity to disturbances have been examined. Furthermore the possibility of using a binary FLC-SLM to perform multi-level amplitude modulation has been verified. After training on a small number of different series of the ten digits, the simulated network has capability to generalize to shapes that are not part of the training set. Unfortunately the synaptic dimensions of the network are so large that the optical implementation could not be performed with the equipment presently at our disposal. With further refined optical components this hybrid system will probably be highly competitive with systems using entirely digital computation. T

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...

متن کامل

An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...

متن کامل

Application of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...

متن کامل

Application of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010